
Effective Hybrid System Falsification
Using Monte Carlo Tree Search Guided

by QB-Robustness

Zhenya Zhang1(B) , Deyun Lyu1 , Paolo Arcaini2 , Lei Ma1,3,4 ,
Ichiro Hasuo2 , and Jianjun Zhao1

1 Kyushu University, Fukuoka, Japan
zhang.zhenya.623@m.kyushu-u.ac.jp

2 National Institute of Informatics, Tokyo, Japan
3 University of Alberta, Edmonton, Canada

4 Alberta Machine Intelligence Institute, Edmonton, Canada

Abstract. Hybrid system falsification is an important quality assurance
method for cyber-physical systems with the advantage of scalability and
feasibility in practice than exhaustive verification. Falsification, given a
desired temporal specification, tries to find an input of violation instead
of a proof guarantee. The state-of-the-art falsification approaches often
employ stochastic hill-climbing optimization that minimizes the degree of
satisfaction of the temporal specification, given by its quantitative robust
semantics. However, it has been shown that the performance of falsifica-
tion could be severely affected by the so-called scale problem, related to
the different scales of the signals used in the specification (e.g., rpm and
speed): in the robustness computation, the contribution of a signal could
be masked by another one. In this paper, we propose a novel approach
to tackle this problem. We first introduce a new robustness definition,
called QB-Robustness, which combines classical Boolean satisfaction and
quantitative robustness. We prove that QB-Robustness can be used to
judge the satisfaction of the specification and avoid the scale problem
in its computation. QB-Robustness is exploited by a falsification app-
roach based on Monte Carlo Tree Search over the structure of the formal
specification. First, tree traversal identifies the sub-formulas for which it
is needed to compute the quantitative robustness. Then, on the leaves,
numerical hill-climbing optimization is performed, aiming to falsify such
sub-formulas. Our in-depth evaluation on multiple benchmarks demon-
strates that our approach achieves better falsification results than the
state-of-the-art falsification approaches guided by the classical quantita-
tive robustness, and it is largely not affected by the scale problem.

Keywords: Falsification · Signal temporal logic · Scale problem ·
Monte carlo tree search · Robust semantics · QB-Robustness

This work is supported in part by JSPS KAKENHI Grant No. 20H04168, 19K24348,
19H04086, JST-Mirai Program Grant No. JPMJMI20B8, Japan. Lei Ma is also sup-
ported by Canada CIFAR AI Program and Natural Sciences and Engineering Research
Council of Canada. Paolo Arcaini and Ichiro Hasuo are supported by ERATO HASUO
Metamathematics for Systems Design Project (No. JPMJER1603), JST.

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 595–618, 2021.
https://doi.org/10.1007/978-3-030-81685-8_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_29&domain=pdf
http://orcid.org/0000-0002-3854-9846
http://orcid.org/0000-0003-3017-7977
http://orcid.org/0000-0002-6253-4062
http://orcid.org/0000-0002-8621-2420
http://orcid.org/0000-0002-8300-4650
http://orcid.org/0000-0001-8083-4352
https://doi.org/10.1007/978-3-030-81685-8_29

596 Z. Zhang et al.

1 Introduction

Cyber-Physical Systems (CPS) are hybrid systems that combine physical systems
(with continuous dynamics) and digital controllers (that are inherently discrete).
Being often safety-critical, their quality assurance is of great importance and
widely investigated by both academia and industry. The continuous dynamics
of hybrid systems leads to infinite search spaces, making their verification often
extremely difficult.

Falsification has been proposed as a more practically feasible approach that
tackles the dual problem of verification: instead of exhaustively proving a prop-
erty, falsification intends to uncover the existence of its violation with counterex-
amples. Formally, the problem is defined as follows. Given a model M taking an
input signal u and outputting a signal M(u), and a specification ϕ (a temporal
formula), the falsification problem consists in finding a falsifying input, i.e., an
input signal u such that the corresponding output M(u) violates ϕ.

The most pursued and successful approach to the falsification problem con-
sists in turning it into an optimization problem; we call it optimization-based
falsification. This is possible thanks to the quantitative robust semantics of tem-
poral formulas [14,19]. Robust semantics extends the classical Boolean satisfac-
tion relation v |= ϕ in the following way: it assigns a value �w, ϕ� ∈ R∪{∞,−∞}
(i.e., robustness) that tells not only whether ϕ is satisfied or violated (by the
sign), but also how robustly the formula is satisfied or violated.

Optimization-based falsification approaches adopt hill-climbing stochastic
optimization strategies to generate inputs to decrease robustness, which ter-
minate when they find an input with negative robustness, i.e., a falsifying input
that triggers the violation of the specification ϕ. Different optimization-based
falsification algorithms have been proposed (see [26] for a survey), and mature
tools (e.g., Breach [13] and S-TaLiRo [4]) have also been developed.

The scale problem is a recognized issue in optimization-based falsification [21,
40], which could arise when multiple signals with different scales are present in
the specification. Namely, it is due to the computation of robust semantics of
Boolean connectives, i.e., the way in which the robustness values of different
sub-formulas are compared and aggregated: such computation is problematic in
the presence of signals that take values having different order of magnitudes.

Example 1. As very simple example, let us consider the formula ϕ ≡
�[0,30](ϕ1 ∧ ϕ2), with ϕ1 ≡ gear < 6 and ϕ2 ≡ speed < 130. It is apparent
that ϕ1 is always satisfied (in any car model with 5 gears), and it has been
added in the specification as redundant check.1 According to robust seman-
tics, the Boolean connective ∧ is interpreted by minimum �, and the “always”
operator �[0,30] is interpreted by infimum

�
; the robustness of an atomic

formula f(x) < c is given by the margin c − f(x). Therefore, the robust-
ness of ϕ under the signal (gear , speed), where gear , speed : [0, 30] → R, is
1 Note that we built such a trivial example just to make the scale problem very easy

to understand. However, in general, the scale problem frequently occurs on much
less trivial specifications, as we will see in the experiments.

Effective Falsification Using MCTS Guided by QB-Robustness 597

�(gear , speed), ϕ� =
�

t∈[0,30]

((
6 − gear(t)

) 	 (
130 − speed(t)

))
. Note that the

robustness of ϕ1 is always in the order of units, while the robustness of ϕ2 is,
in general, in the order of tens. It is not difficult to see that, if both ϕ1 and
ϕ2 are satisfied, the robustness of ϕ will only depend on ϕ1 (because of the
minimum in the robust semantics of the logical connective). In this case, we say
that ϕ1 masks ϕ2. In such a case, a falsification approach relying on robustness
will be misled during the search. Note that, in this particular case, the only way
to falsify ϕ is to falsify ϕ2, because ϕ1 is always satisfied; therefore, falsifying
this relatively simple formula could be extremely difficult for state-of-the-art
optimization-based falsification approaches (as we will show and have confirmed
in the experiments).

In this paper, we propose a novel approach to tackle the scale problem in
optimization-based falsification. Our intuition and insights are that we should
try to avoid the comparison of robustness values of different sub-formulas, so
that one sub-formula does not mask the contribution of another one.

To achieve this, we first propose a new way of computing the satisfaction
of a formula that combines quantitative robust semantics and Boolean seman-
tics. We name the new semantics as QB-Robustness. QB-Robustness, for each
type of formula ϕ, requires selecting a sub-formula ϕk among its sub-formulas
{ϕ1, . . . , ϕK}. For ϕk, the quantitative robust semantics is computed, while for
the other sub-formulas the Boolean semantics is computed. Therefore, the com-
putation of QB-Robustness requires identifying a path Σ along the parse tree of
the formula ϕ, where visited sub-formulas are those for which the quantitative
robustness is computed. We prove that QB-Robustness, independently of the
selected Σ, is equivalent (in terms of sign and satisfaction) to the quantitative
robust semantics (and also to the Boolean one).

In general QB-Robustness is a useful tool for avoiding the scale problem of
falsification. By definition, the quantitative robustness of different sub-formulas
is never compared, so removing the main cause of the scale problem. It would
then make sense to use it for guiding the optimization-based falsification process.
However, QB-Robustness requires to choose a particular sequence Σ of sub-
formulas for which to compute the quantitative robustness. It is relatively easy to
show that some of them provide a better guidance than others to the falsification
search. Considering the previous example, if Σ contains ϕ1, we can encounter the
problem that the quantitative robustness of ϕ1 would not provide any guidance
(i.e., no big variations in the robustness values would be observed). On the other
hand, if Σ contains ϕ2, the quantitative robustness would have larger variations,
providing more effective guidance to the search.

Then, the key problem is how to select the best Σ, that enables the hill-
climbing optimization used in falsification to be more effective. In general,
although it is often difficult to know the best Σ in advance, it is still possi-
ble to learn it by observing sampling results using different Σ. Based on this
intuition, we propose a novel falsification approach that identifies the sequences
Σ that is more likely to be efficient, and uses them in the new falsification
trials. Our approach could be seen as an instantiation of the classical Monte

598 Z. Zhang et al.

Carlo Tree Search (MCTS) method [8,28], which is able to efficiently tackle the
exploration-exploitation tradeoff. In our context, exploration consists in incre-
mentally constructing the tree that represents all the possible sequences, and
exploitation consists in selecting the best Σ and running optimization-based
falsification in which QB-Robustness with Σ is used.

Overall, the major Contributions of this paper are summarized as follows:

– We propose a novel semantics (QB-Robustness) for STL formulas that com-
bines quantitative robustness and Boolean satisfaction. We prove that QB-
Robustness can be used to show the satisfiability of STL formulas;

– We define a falsification approach based on MCTS that exploits QB-
Robustness to address the scale problem;

– We implement the approach in the tool ForeSee, based on which, we per-
formed in-depth evaluation, demonstrating the effectiveness and advantage
of our approach compared with the state of the art.

Paper Structure. In Sect. 2, we introduce the preliminaries of the optimization-
based falsification. In Sect. 3, we introduce the novel STL semantics QB-
Robustness, and, in Sect. 4, we describe the MCTS-based falsification approach
that uses QB-Robustness. In Sect. 5, we describe the experiments and evaluation
results. Finally, we discuss most relevant work to ours in Sect. 6, and conclude
the paper in Sect. 7.

2 Preliminaries

In this section, we briefly review the falsification framework based on robust
semantics of temporal logic [14].

Let T ∈ R+ be a positive real. An M -dimensional signal with a time horizon
T is a function w : [0, T] → R

M . We treat the system model as a black box, i.e.,
its behaviors are only observed from inputs and their corresponding outputs.
Formally, a system model, with M -dimensional input and N -dimensional output,
is a function M that takes an input signal u : [0, T] → R

M and returns a signal
M(u) : [0, T] → R

N . Here the common time horizon T ∈ R+ is arbitrary.

Definition 1 (STL Syntax). We fix a set Var of variables. In Signal Temporal
Logic (STL), atomic propositions and formulas are defined as follows, respec-
tively: α ::≡ f(x1, . . . , xN) > 0, and ϕ ::≡ α | ⊥ | ¬ϕ | ∧

ϕ | ∨
ϕ | �Iϕ | ♦Iϕ |

ϕ UI ϕ Here f is an N -ary function f : R
N → R, x1, . . . , xN ∈ Var, and I is a

closed non-singular interval in R≥0, i.e., I = [a, b] or [a,∞), where a, b ∈ R and
a < b. �,♦ and U are temporal operators, which are usually known as always,
eventually and until respectively. The always operator � and eventually oper-
ator ♦ can also be considered as special cases of the until operator U , where
♦Iϕ ≡ � UI ϕ and �Iϕ ≡ ¬♦I¬ϕ. Other common connectives such as →,� are
introduced as syntactic sugar: � ≡ ¬⊥, ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2.

Definition 2 (Quantitative Robust Semantics). Let w : [0, T] → R
N be

an N -dimensional signal, and t ∈ [0, T). The t-shift wt of w is the signal

Effective Falsification Using MCTS Guided by QB-Robustness 599

wt : [0, T − t] → R
N defined by wt(t′) := w(t + t′). Let ϕ be an STL for-

mula. We define the robustness �w, ϕ� ∈ R ∪ {∞,−∞} as follows, by induction
on the construction of formulas.

�
and

⊔
denote infimums and supremums of

real numbers, respectively. �, the binary version of
�

, denotes minimum.

�w, f(x1, · · · , xN) > 0� := f
(
w(0)(x1), · · · ,w(0)(xN)

)

�w,⊥� := −∞ �w,¬ϕ� := −�w, ϕ�
�w,

∧
i ϕi� :=

�
i�w, ϕi� �w,

∨
i ϕi� :=

⊔
i�w, ϕi�

�w,�Iϕ� :=
�

t∈I∩[0,T]�w
t, ϕ� �w,♦Iϕ� :=

⊔
t∈I∩[0,T]�w

t, ϕ�

�w, ϕ1 UI ϕ2� :=
⊔

t∈I∩[0,T]

(
�wt, ϕ2� � �

t′∈[0,t)�w
t′
, ϕ1�

)

The original STL semantics is Boolean, given by a binary relation |= between
signals and formulas. The robust semantics refines the Boolean one in the fol-
lowing sense: �w, ϕ� > 0 implies w |= ϕ, and �w, ϕ� < 0 implies w
|= ϕ, see [19,
Prop. 16].

2.1 Hill Climbing-Guided Falsification

So far, the falsification problem has received extensive industrial and aca-
demic attention. One possible approach direction by hill-climbing optimization
is an established field, too: see [2–4,10,13–15,17,26,29,36–39,42] and the tools
Breach [13] and S-TaLiRo [4]. We formulate the problem and the methodology,
for later use in describing our falsification approach.

Definition 3 (Falsifying Input). Let M be a system model, and ϕ be an STL
formula. A signal u : [0, T] → R

|Var| is a falsifying input if �M(u), ϕ� < 0; the
latter implies M(u)
|= ϕ.

The use of quantitative robust semantics �M(u), ϕ� ∈ R∪{∞,−∞} in the above
problem enables the use of hill-climbing optimization.

Definition 4 (Hill Climbing-Guided Falsification). Assume the setting in
Definition 3, for finding a falsifying input, the methodology of hill climbing-guided
falsification is presented in Algorithm 1. Here, the function Hill-Climb makes
a guess of an input signal u′, aiming at minimizing the robustness �M(u′), ϕ�.
It does so, learning from the sampling history H that contains the previous
observations of input signals and their corresponding robustness values.

The Hill-Climb function can be designed based on various stochastic opti-
mization algorithms. Typically, at the early phase of the optimization, the pro-
posal of new input is usually based on random sampling; as the set of sampling
history grows larger, the algorithm takes various metaheuristic-based strate-
gies to achieve the optimization goal efficiently. Examples of such algorithms
include Covariance Matrix Adaption Evolution Strategy (CMA-ES) [7] (used in
our experiments), Simulated Annealing, Global Nelder Mead [32], etc.

600 Z. Zhang et al.

Algorithm 1. Hill climbing-guided falsification
Require: a system model M, an STL formula ϕ, and a time budget

1: function Hill-Climb-Falsify(M, ϕ)
2: initialize a placeholder u and rb ← ∞ � the best input signal and robustness
3: H ← ∅ � sampling history of input signals and robustness

4: while rb ≥ 0 and within the time budget do
5: u′ ← Hill-Climb(H) � run hill climbing based on sampling history

6: rb′ ← �M(u′), ϕ� � compute robustness

7: H ← H ∪ {(u′, rb′)} � update sampling history
8: if rb′ < rb then

9: rb ← rb′, u ← u′ � update the best input and robustness

10: return

{
u if rb < 0

Failure otherwise, that is, no falsifying input found within the budget

3 QB-Robustness

The scale problem is a known important issue that negatively affects the perfor-
mance of falsification, which arises when connective operators (i.e., conjunction
and disjunction) with operands that predicate on different signals appear in the
STL formula under falsification. According to the classic quantitative robust
semantics (see Definition 2), the robustness of those formulas is calculated based
on the comparison (minimum for conjunction, and maximum for disjunction)
between robustness values coming from the different operand sub-formulas. How-
ever, since different signals may differ in magnitude, the comparison may be
biased, such that one signal w may always (or often) mask the contribution of
the others, and, therefore, the final robustness may be dominated by this signal
w. Note that, although the scale problem affects connective operators, it is not
only local to the place of their application, but it is always propagated to the
robustness of the whole formula. The scale problem has been shown as a root
cause of the failure of many falsification problems [21,40].

In this work, we propose a novel approach for solving the scale problem in
falsification. Our approach consists in introducing a new semantics for STL that
does not suffer from the scale problem. Such new semantics will be used in a
falsification approach based on Monte Carlo Tree Search. We describe details of
the new semantics in this section, and the new falsification approach in Sect. 4.

The new proposed semantics, called QB-Robustness, combines quantitative
robustness and Boolean satisfaction. By construction, it never compares quanti-
tative robustness values that come from different sub-formulas, thus avoiding the
scale problem. QB-Robustness is defined for the whole STL formulas, except for
the “until” operator ϕ1 UI ϕ2, when ϕ1 is an arbitrary formula. We still support
it as “eventually” and “always” operators2, i.e., when ϕ1 = �. Note that this is
not a major limitation, as QB-Robustness still supports the majority of speci-
fications that are used in industry: indeed, in the experiments, we were able to

2 Recall from Definition 1 that the “eventually” and “always” operators are defined
in terms of the “until” operator.

Effective Falsification Using MCTS Guided by QB-Robustness 601

handle all the specifications used in falsification competitions [18], which collect
benchmarks from industrial case studies.

To better explain the computation of QB-Robustness, we introduce some
definitions. Let us first define the notion of immediate sub-formula for STL.

Definition 5 (Immediate Sub-Formulas). Let ϕ be an STL formula (see
Definition 1). We define the set ISForm(ϕ) of immediate sub-formulas of ϕ as
follows:

ISForm(α) := ∅ ISForm(⊥) := ∅ ISForm(¬ϕ) := ISForm(ϕ)

ISForm(
∧

i∈{1,...,K}
ϕi) := {ϕ1, . . . , ϕK} ISForm(

∨

i∈{1,...,K}
ϕi) := {ϕ1, . . . , ϕK}

ISForm(�Iϕ) := ISForm(ϕ) ISForm(♦Iϕ) := ISForm(ϕ)

Intuitively, the immediate sub-formula set of a connective (conjunction or dis-
junction) contains all its operands. For the other unary operators (temporal
operators, negation, etc.), its immediate sub-formula set is given by the imme-
diate sub-formula set of its argument.

The computation of QB-Robustness requires to select some nested immediate
sub-formulas. To this aim, we introduce the notion of sub-formula sequence.

Definition 6 (Sub-Formula Sequence). Let ϕ be an STL formula. A sub-
formula sequence Σ = σ1 · . . . · σL w.r.t. ϕ is defined as follows:

σ1 ∈ ISForm(ϕ) σl+1 ∈ ISForm(σl) with l = 1, . . . , L − 1

where the · is the concatenation operator in the sequence. We use Σk to denote
the kth element of Σ. Moreover, we denote the first element by Σhead, and the
last element by Σrear. We use Σhead to denote Σ without Σhead. We identify with ε
the empty sequence; when ISForm(ϕ) = ∅, we use ε as its sub-formula sequence.
We identify with Σϕ the set of all the sub-formula sequences rooted in ϕ.

To be specific, in a sub-formula sequence Σ, each element is one of the sub-
formulas of the previous element. This means that, for Boolean connectives, only
one of the operands is selected. Moreover, an atomic sub-formula predicating
over a single signal can only appear as the final element of a sequence. We
exploit these characteristics of Σ to define QB-Robustness, which combines the
quantitative robustness of the sub-formulas related to a given signal with the
Boolean satisfaction of the other sub-formulas. QB-Robustness, given a sequence
Σ, decides whether to compute the quantitative robust semantics or the Boolean
semantics of a sub-formula, by considering whether the sub-formula belongs to Σ
or not. This implies that, in the case of conjunction and disjunction, we evaluate
the quantitative robustness of the sub-formula in Σ and the Boolean satisfaction
of the other sub-formulas. Based on such intuition, we define the semantics of
our proposed QB-Robustness in Definition 7, and demonstrate its usefulness in
Theorem 1.

602 Z. Zhang et al.

Definition 7 (Semantics of QB-Robustness). Let ϕ be an STL formula as
defined in Definition 1, and Σ be a sub-formula sequence w.r.t. ϕ. For ϕ ≡∧

ϕi | ∨
ϕi, let ϕk ∈ ISForm(ϕ) be the first element Σhead of Σ, then we can

represent these two cases as ϕ ≡ ϕk ∧ ϕk | ϕk ∨ ϕk, where ϕk is the conjunction
(or disjunction, respectively) of the other formulas in ISForm(ϕ) \ {ϕk}. The
QB-Robustness QBRob(w, ϕ,Σ) of ϕ w.r.t. Σ is defined as follows:

QBRob(w, α, ε) := �w, α� QBRob(w,⊥, ε) := −∞
QBRob(w,¬ϕ,Σ) := −QBRob(w, ϕ,Σ)

QBRob(w, ϕk ∧ ϕk, Σ) :=
{
QBRob(w, ϕk, Σhead) if w |= ϕk

−∞ otherwise

QBRob(w, ϕk ∨ ϕk, Σ) :=
{
QBRob(w, ϕk, Σhead) if w
|= ϕk

∞ otherwise

QBRob(w,�Iϕ,Σ) :=
�

t∈I

QBRob(wt, ϕ,Σ)

QBRob(w,♦Iϕ,Σ) :=
⊔

t∈I

QBRob(wt, ϕ,Σ)

We now prove that the semantics of QB-Robustness is equivalent (in the
sense of satisfaction) to the Boolean semantics, and so it can be used to show
violation of a specification in a falsification algorithm, as we do in this paper.

Theorem 1. Let ϕ be an STL formula. Given a signal w, for any Σ ∈ Σϕ, it
holds that QBRob(w, ϕ,Σ) > 0 implies w |= ϕ. Similarly, for any Σ ∈ Σϕ, it
holds that QBRob(w, ϕ,Σ) < 0 implies w
|= ϕ.

Proof. We first recall from [19, Prop. 16] that �w, ϕ� < 0 implies w
|= ϕ, and
that �w, ϕ� > 0 implies w |= ϕ. We prove Theorem 1 by induction on the
structure of the formula.

– Case ϕ = α. By Definition 7, QBRob(w, α, ε) > 0 indicates that �w, α� > 0
and hence w |= α, and QBRob(w, α, ε) < 0 that �w, α� < 0 and hence w
|= ϕ.

– For the following cases, let us assume that Theorem 1 holds for an arbitrary
formula ϕ′ and its sub-formula sequence Σ′ that QBRob(w, ϕ′, Σ′) > 0 implies
�w, ϕ′� > 0, and that QBRob(w, ϕ′, Σ′) < 0 implies �w, ϕ′� < 0. We aim to
prove that Theorem 1 also holds for ϕ, resulting from the application of the
operator in each of the following cases to ϕ′, and Σ, the sub-formula sequence
of ϕ.

• Case ϕ = ϕ′ ∧ ψ, where ψ is an arbitrary formula. Let Σ = ϕ′ · Σ′, and
let us consider the two cases in which QBRob(w, ϕ,Σ) is negative and
positive separately:

∗ If QBRob(w, ϕ,Σ) < 0, there are two sub-cases:
· if QBRob(w, ϕ′, Σ′) < 0, then �w, ϕ′� < 0 (by assumption).
Then, by the robust semantics of conjunction, also �w, ϕ� < 0
holds, and so it does w
|= ϕ.

Effective Falsification Using MCTS Guided by QB-Robustness 603

· if QBRob(w, ϕ′, Σ′) > 0, then �w, ϕ′� > 0 (by assumption).
Then, it holds w
|= ψ by Definition 7, and, therefore, it holds
w
|= ϕ.

∗ If QBRob(w, ϕ,Σ) > 0, it means that QBRob(w, ϕ′, Σ′) > 0 and
w |= ψ (by Definition 7). By assumption, if QBRob(w, ϕ′, Σ′) > 0,
then �w, ϕ′� > 0. Therefore, w |= ϕ.

• Case ϕ = �Iϕ
′. Let Σ = Σ′, and let us consider the two cases in which

QBRob(w, ϕ,Σ) is negative and positive separately:
∗ By Definition 7,QBRob(w, ϕ,Σ) < 0 indicates that there exists a
t ∈ I such that QBRob(wt, ϕ′, Σ) < 0. By assumption, it holds that
wt
|= ϕ′. Then, by the semantics of the always operator �, it holds
that w
|= ϕ.
∗ By Definition 7,QBRob(w, ϕ,Σ) > 0 indicates that for all t ∈ I it
holds that QBRob(wt, ϕ′, Σ) > 0. Then, by assumption, it holds that
for all t ∈ I, wt |= ϕ′. So, by the semantics of the always operator �,
it holds that w |= ϕ.

• Case ϕ = ¬ϕ′. Let Σ = Σ′, and let us consider the two cases in which
QBRob(w, ϕ,Σ) is negative and positive separately:

∗ By Definition 7, QBRob(w, ϕ,Σ) < 0 indicates that
QBRob(w, ϕ′, Σ′) > 0. By assumption, it holds that w |= ϕ′, and
therefore, w
|= ϕ.
∗ By Definition 7, QBRob(w, ϕ,Σ) > 0 indicates that
QBRob(w, ϕ′, Σ′) < 0. By assumption, it holds that w
|= ϕ′, and,
therefore, w |= ϕ.

• Proofs for the cases of ϕ = ϕ′ ∨ ψ and ϕ = ♦Iϕ
′ follow similar proof

patterns, and so are left to the readers.

We use an example to illustrate how QB-Robustness is used for checking the
satisfiability of an STL formula.

Example 2. Let w : [0, T] → R
2 be a 2-dimensional signal and ϕ = �I(ϕ1∨ϕ2)

be an STL formula where ϕ1 and ϕ2 are two atomic formulas. Intuitively, to
make ϕ falsified, there must exist t ∈ I such that wt
|= ϕ1 and wt
|= ϕ2. Let us
consider a non-trivial falsification problem in which, for most of the signals w,
sets {t ∈ I | wt
|= ϕ1} and {t ∈ I | wt
|= ϕ2} are non-empty and disjoint.

By Definition 7, given the sub-formula sequence Σ = ϕ1 of ϕ, the correspond-
ing QB-Robustness is QBRob(w, ϕ,Σ) =

�
t∈IQBRob(w

t, ϕ1 ∨ ϕ2, ϕ1), i.e., it
takes the infimum of QBRob(wt, ϕ1 ∨ ϕ2, ϕ1) over t ∈ I. Again, by Definition 7,
for any t′ ∈ I, QBRob(wt′

, ϕ1 ∨ ϕ2, ϕ1) is computed as follows:

– if for a t′ ∈ I it holds wt′ |= ϕ2, then QBRob(wt′
, ϕ1 ∨ ϕ2, ϕ1) = ∞. Then, it

is impossible that
�

t∈IQBRob(w
t, ϕ1 ∨ ϕ2, ϕ1) is given by QBRob(wt′

, ϕ1 ∨
ϕ2, ϕ1);

– if for a t′ ∈ I it holds wt′
|= ϕ2, then QBRob(wt′
, ϕ1 ∨ ϕ2, ϕ1) =

QBRob(wt′
, ϕ1, ε) = �wt′

, ϕ1�. In this case, QBRob(wt′
, ϕ1 ∨ ϕ2, ϕ1) has a

chance to determine the value of
�

t∈IQBRob(w
t, ϕ1 ∨ ϕ2, ϕ1).

604 Z. Zhang et al.

Therefore, when Σ = ϕ1, it holds that QBRob(w, ϕ,Σ) =
�

t∈S�wt, ϕ1�, where
S = {t ∈ I | wt
|= ϕ2}, i.e., the infimum of the quantitative robustness of ϕ1

on the interval when ϕ2 is violated. Indeed, once this value is negative, it means
that there exists a point t ∈ I when both ϕ1 and ϕ2 are violated; by the Boolean
semantics of always and disjunction, ϕ is violated.

4 MCTS-Based Falsification Guided by QB-Robustness

QB-Robustness never compares robustness values coming from signals with dif-
ferent magnitudes, and, therefore, it does not suffer from the scale problem. As
such, it could be used in falsification approaches instead of the classical pure
quantitative robustness.

However, a sub-formula sequence Σ is required when calculating QB-
Robustness, and such sequence is not unique (see Definition 7). Note that the
selection of the sequence can affect the performance of the numerical optimiza-
tion algorithms used in falsification. Let us consider ϕ ≡ �((gear < 6)∧(speed <
130)) as an example. As explained in Sect.1, numerical optimization will perform
better if guided by the robustness values coming from speed rather than by those
coming from gear . Therefore, in a falsification approach using QB-Robustness,
it is important to select an appropriate sub-formula sequence Σ.

By using the QB-Robustness, the problem of falsifying an STL formula ϕ
consists in finding both a signal w and a sub-formula sequence Σ such that
QBRob(w, ϕ,Σ) < 0. The selection of Σ is discrete, while the search for w is
numerical. In order to combine these processes that are different in nature, we
propose to adapt Monte Carlo Tree Search (MCTS) [8,28]. In the following, we
firstly give a brief introduction to MCTS in Subsect. 4.1, and then present the
application of MCTS to our falsification problem in Subsect. 4.2.

4.1 MCTS Background

MCTS exemplifies the “trial and error” philosophy, and has achieved a great
success over the past decade, most notably in fields such as the computer Go
game [35]. MCTS explores the action space given by the possible actions of
the system; for example, in the Go game, these are the positions where to put
the next stone. The approach builds a tree of sequences of actions, and assigns
rewards to the different branches. MCTS performs the search by iteratively tak-
ing the following four steps. See Fig. 1, where the general scheme is adapted to
our current setting, for illustration.

– Selection. It selects a node to expand or to reason about. Initially, selection has
no other choice than the root. When a node has multiple expanded children,
selection will be done according to the UCB1 [6] algorithm.

– Expansion. Child expansion happens after selection if the selected node has
unexpanded children. A child will be added to the tree during expansion.

– Playout. After a node is just expanded or a leaf is reached, playout is per-
formed for evaluating the node. The evaluation is given by a reward, which

Effective Falsification Using MCTS Guided by QB-Robustness 605

ϕ ϕ ϕ ϕ

ϕ1

ϕ11

ϕ1

ϕ11 ϕ11 ϕ11

ϕ1 ϕ1ϕ2 ϕ2

ϕ12

ϕ1

ϕ11

hill climbing guided
by QB-Robustness

a falsifying input found!
rwd : 0.8
visit : 1

rwd : 0.8
visit : 1

rwd : 0.8
visit : 1

rwd : 0.8
visit : 1

rwd : 0.2
visit : 1

selection by
UCB1 algorithm

Initialization Expansion Playout Backpropagation Selection Termination

rb ← QBRob(M(u), ϕ, Σ)
Σ ← ϕ1 · ϕ11

Hill-Climb({u, rb})

Fig. 1. The workflow of MCTS-based falsification guided by QB-Robustness. Let us
consider the falsification of an STL formula ϕ = �I (ϕ1 ∨ ϕ2), where ϕ1 = ϕ11 ∧ ϕ12.
Initially, there is only the root in the tree, so the algorithm selects it for expansion.
Then, the algorithm keeps on randomly selecting a child of a non-fully expanded node,
until a leaf node is reached. By reaching a leaf, a sub-formula sequence Σ has been
constructed; the algorithm performs playout using Σ, by running hill-climbing opti-
mization guided by the QB-Robustness with Σ, to estimate the reward of the path.
After playout, the algorithm backpropagates the reward and the number of visits from
the leaf to the root. When all the children of a node are expanded, selection is done
based on the UCB1 algorithm. After many loops, the algorithm has explored all the
possible sub-formula sequences in Σϕ, and it starts allocating more resources to those
branches where hill-climbing optimization progresses more smoothly. The algorithm
terminates either when a falsifying input is found, or when the budget is exhausted.

is a real number in [0, 1]. Reward can be interpreted differently in different
contexts. For example, in the Go game, the reward of a position is measured
by the winning rate when a stone is positioned there; this is estimated by
randomly playing the game until the end for n times, and then taking the
ratio nw

n of the number of winning as the winning rate.
– Backpropagation. Backpropagation updates the number of visits and the

reward of the nodes along the path from the node of playout to the root.
These data are used in subsequent loops to decide the branches to explore.

At the end, the action space will be sufficiently explored in an unbalanced man-
ner, by focusing on the most promising sub-spaces giving the highest rewards.

4.2 Proposed QB-Robustness-Guided Falsification Approach

We here propose a falsification framework based on MCTS in which, during tree
construction, we synthesize and select a sub-formula sequence that facilitates
the falsification progress the most, and, at the bottom layer of the tree, we run
numerical optimization to search for a falsifying input and provide feedback (i.e.,
backpropagation) to guide the sequence selection.

We formalize our algorithm in Algorithm 2 and visualize its execution in
Fig. 1. In the following, we elaborate on our approach.

606 Z. Zhang et al.

Algorithm 2. MCTS-based falsification guided by QB-Robustness
Require: a system model M, an STL formula ϕ, and the following tunable parame-

ters: a scalar c for UCB1, an MCTS budget BM , and a playout budget BP .

1: function MCTS
2: Σ init ← ϕ � the root denoted as a sequence with ϕ only
3: T ← {Σ init} � the MCTS search tree, initially root only
4: N ← (Σ init �→ 0) � visit count N initialized, defined only for root
5: R ← (Σ init �→ 0) � reward function R initialized
6: H ← (Σ init �→ ∅) � the sampling history of hill climbing
7: while ϕ not falsified and within the MCTS budget BM do
8: MCTSSearch(Σ init)

9: function MCTSSearch(Σ)
10: if ISForm(Σrear) �= ∅ then � the node has children
11: if Σ · ϕk ∈ T for all ϕk ∈ ISForm(Σrear) then � all children expanded

12: ϕk ← arg max
ϕi∈ISForm(Σrear)

(
R(Σ · ϕi) + c

√
2 ln N(Σ)

N(Σ · ϕi)

)
� selection by UCB1

13: else � unexpanded children exist
14: randomly select ϕk from {ϕk ∈ ISForm(Σrear) | Σ · ϕk �∈ T }
15: T ← T ∪ {Σ · ϕk} � expand a new child
16: N(Σ · ϕk) ← 0
17: H(Σ · ϕk) ← ∅

18: MCTSSearch(Σ · ϕk) � recursive call
19: R(Σ) ← max

ϕk∈ISForm(Σrear)
R(Σ · ϕk) � back propagation for reward

20: else � a leaf node reached
21: while within playout budget BP do � playout by hill-climbing falsification
22: u ← Hill-Climb(H(Σ)) � hill-climbing
23: rb ← QBRob(M(u), ϕ, Σhead)
24: if rb < 0 then � falsifying input found
25: return (u, rb)

26: H(Σ) ← H(Σ) ∪ {(u, rb)} � record sampling history

27: R(w) ← Rwd(rb, H(Σ))

28: N(Σ) ← N(Σ) + 1 � back propagation for visit count

We construct the tree in this way: each node represents a sequence of formu-
las, and each edge of a node is a sub-formula of the last element of the sequence
represented by the node. The root is initialized with a sequence holding ϕ only
(Lines 2–3) and some other properties including the number of visits to the differ-
ent nodes (Line 4), the reward (Line 5), and the history of hill-climbing sampling
(Line 6). The main process of MCTS consists in calling the MCTSSearch func-
tion iteratively with the root as argument (Line 8), until the exhaustion of the
MCTS budget or a falsifying input is found (Line 7). The MCTSSearch func-
tion (Line 9) goes through the four phases, namely selection, expansion, playout
and backpropagation, of the original MCTS algorithm.

Effective Falsification Using MCTS Guided by QB-Robustness 607

Selection. Selection happens when a node has children (Line 10) and these
have all been expanded (Line 11). It selects a child according to the UCB1 [6]
algorithm (Line 12) to take a balance between exploration and exploitation. The
exploitation is embodied by the reward R(Σ · ϕi)—the higher the reward is,
the more likely a falsifying input is found following that branch. Exploration,

instead, is considered via
√

2 lnN(Σ)
N(Σ·ϕi)

that is negatively correlated to the number
of visits to a child—the more the child was visited before, the less chance it will
be visited again. The scalar c is a tunable parameter that balances the trade-off
between exploration and exploitation. After a child Σ · ϕk is selected, it will be
taken as the argument of the next MCTSSearch loop (Line 18).

Expansion. If not all the children of a node have been expanded (Line 13), a
child will be expanded. Expansion consists in randomly selecting a child from
the unexpanded child list (Line 14), adding it to the tree (Line 15), initilizing
properties including the number of visits and history (Lines 16–17). After expan-
sion, the newly expanded child will be taken as the argument of the recursive
call to MCTSSearch (Line 18).

Playout. If a leaf node that has no children to expand is reached, the playout
phase will start to devise a reward for evaluating the visited path. In our context,
we define the reward based on the best robustness value that can be obtained
with the path; specifically, playout consists in running hill-climbing guided falsifi-
cation to search for a minimal robustness value (Line 22). Note that the sequence
Σ represented by a leaf node is actually the concatenation between ϕ and a sub-
formula sequence of ϕ. We extract the suffix of Σ, i.e., the sub-formula sequence,
to compute the QB-Robustness as a guidance to the hill-climbing optimization
(Line 23). If a negative QB-Robustness is found (Line 24), then the whole algo-
rithm can be terminated and the input signal u that triggers the negative QB-
Robustness can be returned as the falsifying input (Line 25); otherwise, the
sampling history of hill climbing will be saved (Line 26) so that the future play-
out at the same leaf can be restored from that context. After playout, the reward
of the leaf node will be updated based on the definition of the reward, which will
be introduced below. Reward Since our goal is to find a sequence Σ with which
hill-climbing optimization can minimize QBRob(w, ϕ,Σ) smoothly, we connect
the reward with the hill-climbing progress. Formally, given a sampling history
H, our reward (Line 27) is defined as Rwd(rb′,H) := max rbh−min ({rb′}∪rbh)

max rbh
,

where rbh is the history of robustness values in H.

Backpropagation. In MCTS, the playout result of a leaf is backpropagated to
the higher layer nodes along the path, so that the future selection on the high
layer is referred. Backpropagation updates two properties of each ancestor of the
leaf till the root, the reward (Line 19) and the number of visits (Line 28).

Remark 1 (Approach Complexity). With respect to classical falsification,
our approach introduces an exploration phase for searching the “best” sub-
formula sequence to instantiate QB-Robustness. The number of these sequences
corresponds to the number of atomic sub-formulas (and so the leaves of the

608 Z. Zhang et al.

Table 1. Benchmarks – STL specifications

Spec. ID Temporal specification in STL

AT1 �[0,30] (gear = 4 → speed > 35)

AT2 �[0,30] (gear = 4 → ♦[0,5] (rpm < 4300))

AT3 �[0,30] (speed < 130 ∧ gear < 5)

AT4 �[0,30] (speed < 135 ∧ rpm < 4780)

AT5 �[0,30] (rpm < 600 → ♦[0,10] (gear > 1))

AT6 �[0,30] (♦[0,5](speed < 120 ∨ rpm > 3500))

AT7 �[0,30] (rpm < 4750 ∧ gear < 5)

Spec. ID Temporal specification in STL

AT8 �[0,10] (speed < 50) ∨ ♦[0,30] (rpm > 2520)

AT9 ♦[10,30](speed < 50 ∨ speed > 60 ∨ rpm < 1000)

AT10 �[0,30] (gear = 4 → (speed > 35 ∧ ♦[0,5] (rpm < 4000)))

AT11 �[0,30] (♦[0,8] (gear = 1 → (speed < 20 ∧ rpm < 600)))

AT12 �[0,30] (gear < 3) ∨ �[0,30] (speed < 135 ∧ rpm < 4780)

AT13 �[0,30] ((gear = 4 → ♦[0,5] (rpm < 4000)) ∧ gear < 5)

AT14 �[0,30] (throttle = 0 ∨ brake = 0) → �[0,30] (speed < 110)

Spec. ID Temporal specification in STL

AT15 �[0,30]((rpm < 4770 ∨ �[0,1] (rpm > 1000)) ∧ ♦[0,5] (gear < 5))

AT16 �[0,30] (gear = 4 → ((♦[0,5] (rpm < 3000) ∧ (gear = 2 → speed < 20))))

AT17 �[0,5] (speed < 70 ∧ gear < 4) ∧ �[10,20](rpm < 4780) ∧ �[25,30](speed < 130)

AT18 �[0,30] ((gear = 4 → ♦[0,5] (rpm < 4250)) ∧ (gear = 3 → ♦[0,5] (rpm < 4700)) ∧ (gear = 2 → ♦[0,5] (rpm < 4800)))

AT19 �[0,30] ((gear = 1 → speed < 80) ∧ (gear = 2 → speed < 90) ∧ (gear = 3 → speed > 20) ∧ (gear = 4 → speed > 30))

AT20 �[0,29] (speed < 100) ∨ �[29,30](speed > 64) ∧ �[0,30] (rpm < 4770 ∨ �[0,1] (rpm > 700))

AT21 �[0,30] (throttle > 90 → ♦[0,10] (throttle < 30)) → �[0,30] (gear = 4 → ♦[0,5] (rpm < 4000))

AT22 �[0,30] (throttle > 70 → ♦[0,10](brake > 50)) → �[0,30](gear = 4 → speed > 35)

Spec. ID Temporal specification in STL

AFC1 �[11,50] (mode = 1 → μ < 0.228)

AFC2 ♦[0,50] (PedalAngle > 40) → �[11,50] (μ < 0.225)

AFC3 ♦[0,50] (EngineSpeed > 1000) → �[11,50] (μ < 0.225)

AFC4 �[0,50] (EngineSpeed > 910 ∨ PedalAngle > 25) → �[11,50] (μ < 0.225)

AFC5 ♦[0,50] (PedalAngle > 40) → �[11,50] (♦[0,8] (μ < 0.06))

AFC6 ♦[0,50] (PedalAngle > 40 ∧ EngineSpeed > 1000) → �[11,50] (♦[0,8] (μ < 0.06))

Spec. ID Temporal specification in STL

FFR1 �[0,5]((u1, u3 > 0 ∨ u1, u3 < 0) ∧ (u2, u4 > 0 ∨ u2, u4 < 0)) → �[0,5](¬(x1 > 3.9 ∧ x1 < 4.1) ∧ ¬(x3 > 3.9 ∧ x3 < 4.1))

FFR2 ¬(♦[0,5](�[0,2](x1 > 1.5 ∧ x1 < 1.7 ∧ x3 > 1.5 ∧ x3 < 1.7)))

tree). Considering that most of the time is spent on playout, the complexity of
our approach grows linearly with the number of atomic sub-formulas.

5 Experimental Evaluation

In this section, we present the experiments we conducted to evaluate the effec-
tiveness of the proposed approach. We first introduce the experiment setup
in Subsect. 5.1, and then we present the experimental evaluation results by
answering three research questions in Subsect. 5.2.

5.1 Experiment Setup

Simulink Models and Specifications As our benchmarks, we selected three
Simulink models frequently used in the falsification community (i.e., in the fal-
sification competitions [18]), and 30 specifications defined for them. All these
models are complicated hybrid systems with multiple input and output signals.
The specifications are STL formulas that formalize system requirements regard-
ing safety, performance, etc. Since we are interested in assessing the influence of
the scale problem to the performance of the compared falsification approaches,

Effective Falsification Using MCTS Guided by QB-Robustness 609

all the considered specifications predicate over, at least, two signals. Table 1
reports the 30 specifications under test. The IDs of the specifications identify
which models they belong to. A description of the three models and of their
specifications is as follows.

– Automatic Transmission (AT) [24] has two input signals, throttle ∈ [0, 100]
and brake ∈ [0, 325], and three outputs signals including gear, speed and
rpm. Most of the specifications we used formalize safety requirements of the
system. For instance, AT2 requires that when gear is as high as 4, rpm
should not be larger than 4300; AT3 is an adaptation of the example we used
in Sect. 1; AT10-12 reason about the relationship among the three output
signals; AT17 specifies three properties for three different time intervals; AT18
specifies different properties for different values of gear ; AT14, AT21 and
AT22 impose logical constraints on input signals, in addition to the property
under consideration.

– Abstract Fuel Control (AFC) [25] takes two input signals, PedalAngle ∈
[8.8, 70] and EngineSpeed ∈ [900, 1100], and outputs a ratio μ reflecting the
deviation of air-fuel-ratio from its reference value. The basic safety require-
ment to this system is that μ should not be deviated from the reference value
too much (AFC1); in addition to that, our specifications also reason about
the resilience of the system (AFC5 and AFC6), and impose input constraints
(AFC2-6).

– Free Floating Robot (FFR) [11] models robot moving in a 2-dimentional space.
It has four input signals u1, u2, u3, u4 ∈ [−10, 10] that are boosters for a robot,
and four output signals that are the position in terms of coordinate values
x, y and their one-order derivatives ẋ, ẏ. The specifications regulate the kinetic
properties of the robot: FFR1 requires the robot to pass an area around the
point (4, 4) under an input constraint, and FFR2 requires the robot to stay
in an area for at least 2 s.

Baseline Approach and Our Proposed Approach. In our experiments, we compare
the performances of our proposed approach with the baseline Breach approach.
We implemented our approach in the tool ForeSee, which stands for FORmula
Exploitation by Sequence trEE for falsification.

Breach is a state-of-the-art falsification tool that implements the classic fal-
sification workflow we introduced in Sect. 2. The quantitative robustness calcu-
lation in Breach is based on the robust semantics given in Definition 2. Breach
also encapsulates several stochastic optimization algorithms, such as CMA-ES,
Simulated Annealing, etc. The implementation of our ForeSee approach uses
Breach only for interfacing with the Simulink model and for the calculation
of quantitative robustness; instead, the calculation of QB-Robustness, and the
implementation of the MCTS algorithm are novel. Since CMA-ES has proved
to be the state-of-the-art stochastic algorithm [39], we select CMA-ES as our
backend optimizer for the playout phase.3

3 ForeSee is available at https://github.com/choshina/ForeSee.

https://github.com/choshina/ForeSee

610 Z. Zhang et al.

We apply the two approaches, ForeSee and Breach, to each benchmark spec-
ification reported in Table 1. Since both approaches are based on stochastic opti-
mization, we repeat each experiment for 30 times, as suggested by a guideline for
conducting experiments with randomized algorithms [5]. For each experiment,
both approaches have been given a total timeout BM of 900 s (see Algorithm 2).

Evaluation Metrics. As first evaluation metric, we compute the falsification rate
(FR) as the number of runs (out of 30) in which the approach returns a falsifying
input. Therefore, FR is an indicator of the effectiveness of an approach, i.e., it
reflects the ability of an algorithm to falsify the specification. As second evalua-
tion metric, we compute the average time (seconds), as average execution time
of the successful falsification runs. Therefore, the average time is an indicator
of the efficiency of the approach. We do not report the number of simulations
because these are consistent with the execution time.

Experiment Platform. In our experiments, we use Breach [13] (ver 1.2.13) with
CMA-ES (the state of the art). Breach accepts piece-wise constant signals as
input for the Simulink models; we use the same settings used in falsification
competitions [18]: we use piece-wise constant signals with five control points for
AT and AFC, and with four control points for FFR. As configuration of MCTS
(see Algorithm 2), we set the UCB1 scalar c to 0.2, and the playout budget
BP to 10 generations. The experiments have been executed on an Amazon EC2
c4.2xlarge instance (2.9 GHz Intel Xeon E5-2666 v3, 15 GB RAM).

5.2 Evaluation

We here analyze the experimental results using three research questions (RQs).

RQ1. Does the proposed approach perform better than state-of-the-art falsifica-
tion approaches?

In this RQ, we aim at assessing whether the proposed approach is indeed able
to tackle the scale problem in falsification and performs better than state-of-the-
art approaches. Table 2 reports, for each specification benchmark, the falsifica-
tion rate FR and the average execution time of our proposed approach ForeSee
and of the baseline Breach. The table further reports the difference of the two
metrics between the two approaches. We highlight in gray the best results in
which ForeSee has an FR of 15 units higher than Breach. We observe that
for 25 benchmarks out of 30, ForeSee has a better FR, and in 15 of these the
improvement is significant (selected in gray). Note that there are notable cases,
such as AT3, AT13, AT16, and AT17, in which Breach only finds at most two
falsifying inputs, while ForeSee finds always at least 29 falsifying inputs. In four
cases, Breach has a better FR: while for AT8, AFC6, and FFR2 the difference
is minimal, it is quite large for AT14. We further inspected such specification
and its corresponding model (see Table 1); we noticed that all the sub-formulas
in AT14 must be falsified to falsify the whole specification4, and they are all
4 Note that all binary connectives of AT14 are disjunctions; indeed, A → B is the

syntactic sugar for ¬A
⊔

B .

Effective Falsification Using MCTS Guided by QB-Robustness 611

Table 2. Falsification performance comparison between Breach and ForeSee on bench-
marks. Timeout: 900 s. FR in (/30), time in secs.

Breach ForeSee

FR time FR time ΔFR Δtime

AT1 12 67.0 29 90.3 +17 +23.3

AT2 18 208.5 30 155.5 +12 -53.0

AT3 0 - 29 87.3 +29 -

AT4 8 414.0 30 376.6 +12 -37.4

AT5 13 44.7 30 159.0 +17 +114.3

AT6 14 630.5 20 545.9 +6 -84.6

AT7 20 24.9 30 5.8 +10 -19.1

AT8 17 418.5 13 547.0 -4 +128.5

AT9 9 298.6 29 208.0 +20 -90.6

AT10 14 99.4 30 89.7 +16 -9.7

AT11 17 58.1 30 39.6 +13 -18.5

Breach ForeSee

FR time FR time ΔFR Δtime

AT12 5 379.2 28 381.4 +23 +2.2

AT13 2 75.2 29 98.3 +27 +23.1

AT14 24 184.9 1 601.5 -23 +416.6

AT15 1 66.1 9 331.8 +8 +265.7

AT16 1 13.0 30 6.7 +29 -6.3

AT17 0 - 30 208.8 +30 -

AT18 18 160.0 24 234.3 +6 +74.3

AT19 15 81.8 30 154.3 +15 +72.5

AT20 1 97.7 5 286.2 +4 +188.5

AT21 10 239.0 29 425.5 +19 +186.5

AT22 13 72.0 30 113.3 +17 +41.3

Breach ForeSee

FR time FR time ΔFR Δtime

AFC1 10 532.2 12 458.0 +2 -74.2

AFC2 12 546.9 30 218.3 +18 -328.6

AFC3 8 727.6 28 232.5 +20 -495.1

Breach ForeSee

FR time FR time ΔFR Δtime

AFC4 7 634.5 22 500.3 +15 -134.2

AFC5 8 576.9 9 322.0 +1 -254.9

AFC6 10 518.2 6 344.2 -4 -174.0

Breach ForeSee

FR time FR time ΔFR Δtime

FFR1 7 132.1 7 399.3 +0 +267.2

Breach ForeSee

FR time FR time ΔFR Δtime

FFR2 30 38.0 27 348.0 -3 +310.0

difficult to be falsified. In such a case, there is no best sub-formula sequence Σ:
therefore, the time spent by ForeSee in exploring different Σ does not provide
any improvement.

Regarding the time execution, there is no clear trend among the different
results: sometimes ForeSee is faster, other times Breach is. However, even in
the cases in which ForeSee is slower, it is still below the timeout by which it
manages to find a falsifying input (so, leading to better falsification rates).

RQ2. Does the proposed approach solve the scale problem effectively?
The benchmarks reported in Table 1 and experimented in RQ1, predicate

over signals having different scales and so they suffer from the scale problem.
RQ1 showed that ForeSee is very efficient in falsifying them. In this RQ, we want
to make a more systematic study of the effects of the scale problem; indeed, the
scale problem could manifest itself in different ways, depending on the difference
of the order of magnitudes of the different signals (e.g., speed [km/h] vs. rpm,
or speed [km/h] vs. rph). To assess this, we take six specifications from Table 1
and we artificially modify their outputs: namely, we multiply by 10k (with dif-
ferent k values depending on the specification) the speed of AT1, AT3, AT4,

612 Z. Zhang et al.

Table 3. Falsification performance under different scales. Each rescaled signal is
rescaled by 10k.

(a) AT1: speed × 10k

Breach ForeSee

k FR time FR time

-2 30 126.5 26 77.5

-1 25 64.4 29 107.9

0 12 67.0 29 90.3

1 9 92.4 28 81.8

2 9 131.9 30 94.2

min 9 64.4 26 77.5

max 30 131.9 30 107.9

mean 17 96.4 28 90.3

(b) AT3: speed × 10k

Breach ForeSee

k FR time FR time

-3 30 124.9 30 81.2

-2 30 135.9 28 82.6

-1 1 136.7 28 101.6

0 0 - 29 87.3

1 0 - 30 103.4

min 0 124.9 28 81.2

max 30 136.7 30 103.4

mean 12 132.5 29 91.2

(c) AT4: speed × 10k

Breach ForeSee

k FR time FR time

-2 29 247.2 29 329.4

-1 29 243.5 28 332.2

0 8 414.0 30 376.6

1 0 - 29 377.6

2 0 - 29 333.2

min 0 243.5 28 329.4

max 29 414.0 30 377.6

mean 13 301.6 29 349.8

(d) AT9: speed × 10k

Breach ForeSee

k FR time FR time

-1 11 202.6 28 259.8

0 9 298.6 29 208.0

1 10 197.4 29 221.2

2 28 175.4 29 248.9

3 30 162.6 29 209.6

min 9 162.6 28 208.0

max 30 298.6 29 259.8

mean 18 207.3 29 229.5

(e) AT15: rpm × 10k

Breach ForeSee

k FR time FR time

-5 20 138.3 6 222.3

-4 13 158.1 10 258.8

-3 4 144.6 5 313.6

-2 0 - 9 268.6

0 1 66.1 9 331.8

min 0 66.1 5 222.3

max 20 158.1 10 331.8

mean 10 126.8 8 279.0

(f) AFC3: EngineSpeed ×10k

Breach ForeSee

k FR time FR time

0 8 727.6 28 232.5

-1 18 574.2 29 284.1

-2 29 401.2 29 211.5

-3 30 215.0 29 230.1

-4 29 198.2 30 236.2

min 8 198.2 28 211.5

max 30 727.7 30 284.1

mean 23 423.2 29 238.9

and AT9; the rpm of AT15; and the EngineSpeed of AFC3. For each artificial
rescaling, both the Simulink model and the specification have been changed.5

We run ForeSee and Breach on these rescaled benchmarks. Table 3 reports the
experimental results for each k. The table also reports the minimum, maximum,
and mean results for FR and execution time. We observe that the performance of
Breach, in terms of FR, is very sensitive to the scale problem. Indeed, for all the
specifications, FR decreases with increasing or decreasing k; notable examples
are AT3 and AT4 in which Breach can (almost) always falsify with the mini-
mum k, but never falsifies with the maximum two k. This is the demonstration
of the effects of the scale problem on falsification approaches that only rely on
quantitative robust semantics where the robustness values of different signals are
compared. By looking at the results of ForeSee, instead, we observe that it is
much more robust and its FR performance is independent of the applied rescal-
ing. This clearly shows that our falsification approach guided by QB-Robustness
is successful in avoiding the scale problem.

5 Note that k = 0 corresponds to the experimental result in Table 2, and we report it
again for reference.

Effective Falsification Using MCTS Guided by QB-Robustness 613

Table 4. Falsification performance under different MCTS hyperparameters.

(a) Performance with varied c

AT17 AT19 AT21

c FR time FR time FR time

0 23 177.8 30 224.6 30 463.4

0.02 26 196.7 30 278.5 28 501.3

0.2 30 208.8 30 154.3 29 425.5

0.5 30 297.0 29 227.3 30 509.0

1.0 30 311.7 30 240.2 24 497.0

(b) Performance with varied BP

AT17 AT19 AT21

BP FR time FR time FR time

2 26 385.2 30 162.0 29 500.0

5 30 347.7 29 207.3 29 472.5

10 30 208.8 30 154.3 29 425.5

15 30 337.7 29 336.7 28 514.0

20 30 358.1 30 313.5 30 511.0

These results also allow us to show that the naive approach based on nor-
malization for solving the scale problem does not work, as also reported in [41].
Indeed, one may think that a solution for tackling the scale problem could be
to rescale the signals in a way to make them have the same order of magni-
tude. This is not a good approach. Let us consider the results in Table 3c for
AT4 (�[0,30] (speed < 135 ∧ rpm < 4780)). In this case, speed is multiplied by
10k. We may think that the best falsification result should occur when speed is
multiplied by 102, because this would make the two signals both in the order of
thousands. However, this rescaling is the one giving the worst result. The best
result is actually given by the rescaling making speed even smaller (i.e., k = −2
and k = −1). This means that the correct way for handling the scale problem
cannot be identified in advance, but we need an approach as ours that learns
during falsification the best strategy.

RQ3. How do the hyperparameters of MCTS influence the performance of the
proposed approach?

Our proposed approach is an instantiation of the Monte Carlo Tree Search
(MCTS) method [8,28] that can be configured with some hyperparameters,
namely the scalar c used by UCB1 (Line 12 in Algorithm 2), and the playout
budget BP (Line 21 in Algorithm 2), both used for balancing between explo-
ration and exploitation. Therefore, the performance of MCTS could be affected
by the values used for these hyperparameters. In this RQ, we try to assess
this. We selected three benchmarks specifications (AT17, AT19, and AT21) and
varied one hyperparameter while keeping the other fixed. Namely, we experi-
mented with c ∈ {0, 0.02, 0.2, 0.5, 1} and budget BP = 10 (see Table 4a), and
with BP ∈ {2, 5, 10, 15, 20} and budget c = 0.2 (see Table 4b). Looking at the
results of Table 4a for AT17 and AT21, there seems to be some influence by
the scalar c. In AT17, the worst result in terms of FR is obtained when c is 0,
meaning that MCTS only focuses on exploitation. AT17 is a specification that
suffers from the scale problem, as shown by the very bad performance of Breach
in Table 2; for such a specification, we need to perform some exploration to find
the best Σ: this explain the low performance of MCTS with c = 0. On the other

614 Z. Zhang et al.

hand, the worst FR performance of AT21 is given by the highest value c = 1
that requires MCTS to spend a lot of time in exploration. Since AT21 is not an
extremely difficult specification (indeed Breach has FR of 10 in Table 2), such
very conservative approach does not pay off, while more greedy approaches (i.e.,
with lower c) have better performance.

Looking at the results of Table 4b related to BP , it seems that there is no
too much influence. The only difference is given in AT17 with BP = 2 where
the FR is slightly lower than the other cases. This means that, provided that a
sufficiently large value for BP is given, ForeSee is not too sensitive to it.

6 Related Work

Quality assurance of CPS has been actively studied, due to its great signifi-
cance. Different approaches, including but not limited to model checking, theo-
rem proving, rigorous numerics, and nonstandard analysis [9,16,20,22,23,31,33],
have been proposed to solve the problem. However, due to the scalability issue
and existence of black-box components, those approaches are not widely applied
in the real-world systems.

The optimization-based falsification approach inherits the search-based test-
ing methodology, and is much more scalable than pure verification-based
approaches. The key issue of search-based testing is the exploration-exploitation
trade-off. This issue has been discussed for the verification of quantitative prop-
erties (e.g., [34]). In the falsification community, there have also been a lot
of works focusing on that, and these works tackle the problem from different
perspectives. Metaheuristics refers to high-level heuristic strategies that utilize
heuristics to improve the search efficiency. Several metaheuristic strategies have
been applied in falsification, such as Simulated Annealing [1], tabu search [10],
and so on. Coverage-guided falsification [2,10,15,29] aims to guide the search
using some coverage metrics, so that the search space is sufficiently explored.
Recently, machine learning techniques have also been applied to falsification to
enhance the search ability. For instance, Bayesian optimization [3,11,36] utilizes
an acquisition function to balance exploration and exploitation; Reinforcement
learning [27,37] naturally emphasizes on exploration.

The scale problem is a recognized issue [12,21,40] that is known to severely
affect the performance of falsification. In [40], we proposed a multi-armed bandit
approach to solve the problem in a specific setting, that is, safety properties with
Boolean connectives: �I (ϕ1 ∧ϕ2) and �I (ϕ1 ∨ϕ2). The approach is not appli-
cable to formulas having more nested sub-formulas, or even connectives having
more operands; therefore many of the benchmarks we used in Subsect.5.2 fall out
of the scope of [40]. The techniques introduced in [12,21] rely on explicit declara-
tion of input vacuity and output robustness. Compared to their approaches, our
method does not need that, but we learn the significance of each signal through
tree exploration and reward computation.

MCTS, as an effective search framework, has been applied in testing hybrid
systems. In [30], the authors applied an adaption of MCTS in testing, namely,

Effective Falsification Using MCTS Guided by QB-Robustness 615

adaptive press testing, to detect the potential dangerous cases of airborne col-
lision. A recent study of MCTS on hybrid system falsification is [39]. There,
the authors discretized the search space to construct the search tree, and then
applied MCTS to explore different sub-spaces. Compared to their approach, our
work aims to tackle the scale problem and so we exploit the structure of speci-
fication formulas to construct the tree search framework.

7 Conclusion and Future Work

Optimization-based falsification is a widely used approach for quality assurance
of CPS, that tries to find an input violating a Signal Temporal Logic (STL)
specification. It does this by exploiting the quantitative robust semantics of the
specification, trying to minimize its robustness. The performance of falsification
is affected by the scale problem in the presence of the comparison of robust-
ness values of sub-formulas predicating over signals having different scales. In
this paper, we propose QB-Robustness, a new STL semantics that does not
suffer from the scale problem, because it avoids such comparison. The compu-
tation of QB-Robustness requires to specify a sub-formula sequence telling for
which sub-formulas the quantitative robustness must be computed. We then
propose a Monte Carlo Tree Search (MCTS)-based falsification approach that
synthesizes a sub-formula sequence for QB-Robustness, and uses this for guiding
numerical optimization. Experimental results show that the proposed approach
achieves better falsification results than a state-of-the-art falsification tool that
uses standard quantitative robust semantics.

In the analysis of RQ1, we observed that, when the specifications have a par-
ticular structure, our approach has no advantage and, actually, it could decrease
the performance by trying to find a best sub-formula sequence that does not
exist for the current initial sampling. As future work, we plan to devise some
heuristics that could handle these cases: for example, we could perform a better
initial sampling (see Subsect. 2.1) that could provide a better initial guidance.

References

1. Abbas, H., Fainekos, G.: Convergence proofs for simulated annealing falsification
of safety properties. In: 50th Annual Allerton Conference on Communication, Con-
trol, and Computing, pp. 1594–1601. IEEE (2012)

2. Adimoolam, A., Dang, T., Donzé, A., Kapinski, J., Jin, X.: Classification and
coverage-based falsification for embedded control systems. In: Majumdar, R.,
Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 483–503. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63387-9 24

3. Akazaki, T., Kumazawa, Y., Hasuo, I.: Causality-aided falsification. In: Proceed-
ings First Workshop on Formal Verification of Autonomous Vehicles, FVAV@iFM
2017, Turin, Italy, 19th September 2017. EPTCS, vol. 257, pp. 3–18 (2017)

4. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 21

https://doi.org/10.1007/978-3-319-63387-9_24
https://doi.org/10.1007/978-3-642-19835-9_21

616 Z. Zhang et al.

5. Arcuri, A., Briand, L.: A practical guide for using statistical tests to assess random-
ized algorithms in software engineering. In: Proceedings of the 33rd International
Conference on Software Engineering, ICSE 2011, pp. 1–10. ACM New York (2011)

6. Auer, P.: Using confidence bounds for exploitation-exploration trade-offs. J. Mach.
Learn. Res. 3, 397–422 (2002)

7. Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing popu-
lation size. In: Proceedings of the IEEE Congress on Evolutionary Computation,
CEC 2005, pp. 1769–1776. IEEE (2005)

8. Browne, C., et al.: A survey of monte carlo tree search methods. IEEE Trans.
Comput. Intellig. AI Games 4(1), 1–43 (2012)

9. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

10. Deshmukh, J., Jin, X., Kapinski, J., Maler, O.: Stochastic local search for falsifi-
cation of hybrid systems. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015.
LNCS, vol. 9364, pp. 500–517. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-24953-7 35

11. Deshmukh, J.V., Horvat, M., Jin, X., Majumdar, R., Prabhu, V.S.: Testing cyber-
physical systems through bayesian optimization. ACM Trans. Embedded Comput.
Syst. 16(5), 170:1–170:18 (2017)

12. Dokhanchi, A., Yaghoubi, S., Hoxha, B., Fainekos, G.E.: Vacuity aware falsification
for MTL request-response specifications. In: 13th IEEE Conference on Automation
Science and Engineering, CASE 2017, Xi’an, China, 20–23 August 2017, pp. 1332–
1337. IEEE (2017)

13. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-
6 17

14. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

15. Dreossi, T., Dang, T., Donzé, A., Kapinski, J., Jin, X., Deshmukh, J.V.: Effi-
cient guiding strategies for testing of temporal properties of hybrid systems. In:
Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp.
127–142. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17524-9 10

16. Dreossi, T., Dang, T., Piazza, C.: Parallelotope bundles for polynomial reacha-
bility. In: Proceedings of the 19th International Conference on Hybrid Systems:
Computation and Control, HSCC 2016 pp. 297–306. ACM, New York (2016)

17. Dreossi, T., Donzé, A., Seshia, S.A.: Compositional falsification of cyber-physical
systems with machine learning components. In: Barrett, C., Davies, M., Kahsai, T.
(eds.) NFM 2017. LNCS, vol. 10227, pp. 357–372. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-57288-8 26

18. Ernst, G., et al.: ARCH-COMP 2020 category report: Falsification. In: ARCH20.
7th International Workshop on Applied Verification of Continuous and Hybrid
Systems (ARCH20). EPiC Series in Computing, vol. 74, pp. 140–152. EasyChair
(2020)

19. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theor. Comput. Sci. 410(42), 4262–4291 (2009)

https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-319-24953-7_35
https://doi.org/10.1007/978-3-319-24953-7_35
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-319-17524-9_10
https://doi.org/10.1007/978-3-319-57288-8_26
https://doi.org/10.1007/978-3-319-57288-8_26

Effective Falsification Using MCTS Guided by QB-Robustness 617

20. Fan, C., Qi, B., Mitra, S., Viswanathan, M., Duggirala, P.S.: Automatic reachabil-
ity analysis for nonlinear hybrid models with C2E2. In: Chaudhuri, S., Farzan, A.
(eds.) CAV 2016. LNCS, vol. 9779, pp. 531–538. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41528-4 29

21. Ferrère, T., Nickovic, D., Donzé, A., Ito, H., Kapinski, J.: Interface-aware signal
temporal logic. In: Proceedings of the 22nd ACM International Conference on
Hybrid Systems: Computation and Control, HSCC 2019, Montreal, QC, Canada,
16–18 April 2019, pp. 57–66 (2019)

22. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

23. Hasuo, I., Suenaga, K.: Exercises in nonstandard static analysis of hybrid systems.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 462–478.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7 34

24. Hoxha, B., Abbas, H., Fainekos, G.E.: Benchmarks for temporal logic requirements
for automotive systems. In: 1st and 2nd International Workshop on Applied veRi-
fication for Continuous and Hybrid Systems, ARCH@CPSWeek 2014, Berlin, Ger-
many, 14 April 2014/ARCH@CPSWeek 2015, Seattle, USA, 13 April 2015. EPiC
Series in Computing, vol. 34, pp. 25–30. EasyChair (2014)

25. Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K.: Powertrain control
verification benchmark. In: Proceedings of the 17th Int. Conf. on Hybrid Systems:
Computation and Control, HSCC 2014, pp. 253–262. ACM, NY, USA (2014)

26. Kapinski, J., Deshmukh, J.V., Jin, X., Ito, H., Butts, K.: Simulation-based
approaches for verification of embedded control systems: an overview of traditional
and advanced modeling, testing, and verification techniques. IEEE Control Syst.
36(6), 45–64 (2016)

27. Kato, K., Ishikawa, F.: Learning-based falsification for model families of cyber-
physical systems. In: 2019 IEEE 24th Pacific Rim International Symposium on
Dependable Computing (PRDC), pp. 236–245 (December 2019)

28. Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842 29

29. Kuřátko, J., Ratschan, S.: Combined global and local search for the falsification of
hybrid systems. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711,
pp. 146–160. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10512-
3 11

30. Lee, R., Kochenderfer, M.J., Mengshoel, O.J., Brat, G.P., Owen, M.P.: Adaptive
stress testing of airborne collision avoidance systems. In: Digital Avionics Systems
Conference, 2015 IEEE/AIAA 34th, pp. 6C2-1. IEEE (2015)

31. Liebrenz, T., Herber, P., Glesner, S.: Deductive verification of hybrid control sys-
tems modeled in Simulink with KeYmaera X. In: Sun, J., Sun, M. (eds.) ICFEM
2018. LNCS, vol. 11232, pp. 89–105. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-02450-5 6

32. Luersen, M.A., Le Riche, R.: Globalized Nelder-mead method for engineering opti-
mization. Comput. Struct. 82(23), 2251–2260 (2004)

33. Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer, Cham
(2018) https://doi.org/10.1007/978-3-319-63588-0

34. Seshia, S.A., Rakhlin, A.: Quantitative analysis of systems using game-theoretic
learning. ACM Trans. Embed. Comput. Syst. 11(S2), 55:1–55:27 (2012)

35. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree
search. Nature 529, 484–489 (2015)

https://doi.org/10.1007/978-3-319-41528-4_29
https://doi.org/10.1007/978-3-319-41528-4_29
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-642-31424-7_34
https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/978-3-319-10512-3_11
https://doi.org/10.1007/978-3-319-10512-3_11
https://doi.org/10.1007/978-3-030-02450-5_6
https://doi.org/10.1007/978-3-030-02450-5_6
https://doi.org/10.1007/978-3-319-63588-0

618 Z. Zhang et al.

36. Silvetti, S., Policriti, A., Bortolussi, L.: An active learning approach to the fal-
sification of black box cyber-physical systems. In: Polikarpova, N., Schneider, S.
(eds.) IFM 2017. LNCS, vol. 10510, pp. 3–17. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66845-1 1

37. Akazaki, T., Liu, S., Yamagata, Y., Duan, Y., Hao, J.: Falsification of cyber-
physical systems using deep reinforcement learning. In: Havelund, K., Peleska, J.,
Roscoe, B., de Vink, E. (eds.) FM 2018. LNCS, vol. 10951, pp. 456–465. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-95582-7 27

38. Zhang, Z., Arcaini, P., Hasuo, I.: Hybrid system falsification under (in)equality
constraints via search space transformation. IEEE Trans. Comput. Aided Des.
Integr. Circ. Syst. 39(11), 3674–3685 (2020)

39. Zhang, Z., Ernst, G., Sedwards, S., Arcaini, P., Hasuo, I.: Two-layered falsification
of hybrid systems guided by monte carlo tree search. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 37(11), 2894–2905 (2018)

40. Zhang, Z., Hasuo, I., Arcaini, P.: Multi-armed bandits for Boolean connectives in
hybrid system falsification. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol.
11561, pp. 401–420. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25540-4 23

41. Zhang, Z., Lyu, D., Arcaini, P., Ma, L., Hasuo, I., Zhao, J.: On the effectiveness
of signal rescaling in hybrid system falsification. In: Dutle, A., Moscato, M.M.,
Titolo, L., Muñoz, C.A., Perez, I. (eds.) NFM 2021. LNCS, vol. 12673, pp. 392–
399. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76384-8 24

42. Zutshi, A., Deshmukh, J.V., Sankaranarayanan, S., Kapinski, J.: Multiple shooting,
cegar-based falsification for hybrid systems. In: 2014 International Conference on
Embedded Software, EMSOFT 2014, New Delhi, India, 12–17 October 2014, pp.
5:1–5:10. ACM (2014)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-66845-1_1
https://doi.org/10.1007/978-3-319-66845-1_1
https://doi.org/10.1007/978-3-319-95582-7_27
https://doi.org/10.1007/978-3-030-25540-4_23
https://doi.org/10.1007/978-3-030-25540-4_23
https://doi.org/10.1007/978-3-030-76384-8_24
http://creativecommons.org/licenses/by/4.0/

	Effective Hybrid System Falsification Using Monte Carlo Tree Search Guided by QB-Robustness
	1 Introduction
	2 Preliminaries
	2.1 Hill Climbing-Guided Falsification

	3 QB-Robustness
	4 MCTS-Based Falsification Guided by QB-Robustness
	4.1 MCTS Background
	4.2 Proposed QB-Robustness-Guided Falsification Approach

	5 Experimental Evaluation
	5.1 Experiment Setup
	5.2 Evaluation

	6 Related Work
	7 Conclusion and Future Work
	References

